Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms.
نویسندگان
چکیده
The genetic and physiological mechanisms of aluminum (Al) tolerance have been well studied in certain cereal crops, and Al tolerance genes have been identified in sorghum (Sorghum bicolor) and wheat (Triticum aestivum). Rice (Oryza sativa) has been reported to be highly Al tolerant; however, a direct comparison of rice and other cereals has not been reported, and the mechanisms of rice Al tolerance are poorly understood. To facilitate Al tolerance phenotyping in rice, a high-throughput imaging system and root quantification computer program was developed, permitting quantification of the entire root system, rather than just the longest root. Additionally, a novel hydroponic solution was developed and optimized for Al tolerance screening in rice and compared with the Yoshida's rice solution commonly used for rice Al tolerance studies. To gain a better understanding of Al tolerance in cereals, comparisons of Al tolerance across cereal species were conducted at four Al concentrations using seven to nine genetically diverse genotypes of wheat, maize (Zea mays), sorghum, and rice. Rice was significantly more tolerant than maize, wheat, and sorghum at all Al concentrations, with the mean Al tolerance level for rice found to be 2- to 6-fold greater than that in maize, wheat, and sorghum. Physiological experiments were conducted on a genetically diverse panel of more than 20 rice genotypes spanning the range of rice Al tolerance and compared with two maize genotypes to determine if rice utilizes the well-described Al tolerance mechanism of root tip Al exclusion mediated by organic acid exudation. These results clearly demonstrate that the extremely high levels of rice Al tolerance are mediated by a novel mechanism, which is independent of root tip Al exclusion.
منابع مشابه
Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance.
Aluminum (Al) toxicity is a major constraint for crop production on acid soils which compose ∼ 40% of arable land in the tropics and subtropics. Rice is the most Al-tolerant cereal crop and offers a good model for identifying Al tolerance genes and mechanisms. Here we investigated natural variation in the rice Nramp aluminum transporter (NRAT1) gene encoding a root plasma membrane Al uptake tra...
متن کاملAssociation Mapping for Aluminum Tolerance in a Core Collection of Rice Landraces
Trivalent aluminum (Al3+) has drastic effect on the rice production in acidic soils. Elite genes for aluminum (Al) tolerance might exist in rice landraces. Therefore, the purpose of this research is to mine the elite genes within rice landraces. Association mapping for Al tolerance traits [i.e., relative root elongation (RRE)] was performed by using a core collection of 150 accessions of rice l...
متن کاملDetermination of Aluminum Stress Tolerance Threshold During Seed Germination of Wheat
Environmental stresses are the most important factors that reduce plant growth in stages of development. The presence of aluminum in acidic soils as an environmental stress has an impact on different parts of the plant and reduces root growth, water absorption and nutrients and increases susceptibility to drought. In order to evaluate the effect of aluminum stress levels on wheat at germinatio...
متن کاملComparative Genome-Wide Transcriptional Analysis of Al-Responsive Genes Reveals Novel Al Tolerance Mechanisms in Rice
Rice (Oryza sativa) is the most aluminum (Al)-tolerant crop among small-grain cereals, but the mechanism underlying its high Al resistance is still not well understood. To understand the mechanisms underlying high Al-tolerance, we performed a comparative genome-wide transcriptional analysis by comparing expression profiling between the Al-tolerance cultivar (Koshihikari) and an Al-sensitive mut...
متن کاملGenetic Architecture of Aluminum Tolerance in Rice (Oryza sativa) Determined through Genome-Wide Association Analysis and QTL Mapping
Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils, and rice has been demonstrated to be significantly more Al tolerant than other cereal crops. However, the mechanisms of rice Al tolerance are largely unknown, and no genes underlying natural variation have been reported. We screened 383 diverse rice accessions, conducted a genome-wide association (GWA) study, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 153 4 شماره
صفحات -
تاریخ انتشار 2010